Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 760
Filtrar
1.
Soft Matter ; 20(16): 3508-3519, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38595302

RESUMO

The decellularized tilapia skin (dTS) has gained significant attention as a promising material for tissue regeneration due to its ability to provide unique structural and functional components that support cell growth, adhesion, and proliferation. However, the clinical application of dTS is limited by its low mechanical strength and rapid biodegradability. Herein, we prepare a novel RGD (arginine-glycine-aspartic acid) functionalized dTS scaffold (dTS/RGD) by using transglutaminase (TGase) crosslinking. The developed dTS/RGD scaffold possesses excellent properties, including a medium porosity of ∼59.2%, a suitable degradation rate of approximately 80% over a period of two weeks, and appropriate mechanical strength with a maximum tensile stress of ∼46.36 MPa which is much higher than that of dTS (∼32.23 MPa). These properties make the dTS/RGD scaffold ideal for promoting cell adhesion and proliferation, thereby accelerating skin wound healing in a full-thickness skin defect model. Such an enzymatic cross-linking strategy provides a favorable microenvironment for wound healing and holds great potential for application in skin regeneration engineering.


Assuntos
Oligopeptídeos , Regeneração , Pele , Tilápia , Tecidos Suporte , Transglutaminases , Animais , Tecidos Suporte/química , Tilápia/metabolismo , Transglutaminases/metabolismo , Transglutaminases/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Cicatrização , Proliferação de Células , Engenharia Tecidual , Porosidade , Camundongos , Adesão Celular , Humanos
2.
Food Chem ; 448: 138988, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522295

RESUMO

This study prepared emulsion gels by modifying ovalbumin (OVA)-flaxseed oil (FSO) emulsions with transglutaminase (TGase) and investigated their properties, structure and oxidative stability under different enzyme reaction times. Here, we found prolonged reaction times led to the transformation of α-helix and ß-turn into ß-sheet and random coil. The elasticity, hardness and water retention of the emulsion gels increased significantly, but the water-holding capacity decreased when the reaction time exceeded 4 h. Confocal laser scanning microscope (CLSM) indicated extended enzyme reaction time fostered oil droplet aggregation with proteins. Emulsion gel reduced FSO oxidation, especially after 4 h of the enzyme reaction, the peroxide value (PV) of the emulsion gel was reduced by 29.16% compared to the control. In summary, the enzyme reaction time of 4 h resulted in the formation of a dense gel structure and enhanced oxidative stability. This study provides the potential applications in functional foods and biomedical fields.


Assuntos
Emulsões , Géis , Óleo de Semente do Linho , Ovalbumina , Oxirredução , Transglutaminases , Ovalbumina/química , Transglutaminases/química , Transglutaminases/metabolismo , Emulsões/química , Óleo de Semente do Linho/química , Géis/química
3.
Matrix Biol ; 125: 113-132, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135164

RESUMO

Transglutaminase 2 (TG2) plays a vital role in stabilizing extracellular matrix (ECM) proteins through enzymatic crosslinking during tissue growth, repair, and inflammation. TG2 also binds non-covalently to fibronectin (FN), an essential component of the ECM, facilitating cell adhesion, migration, proliferation, and survival. However, the interaction between TG2 and fibrillar FN remains poorly understood, as most studies have focused on soluble or surface-adsorbed FN or FN fragments, which differ in their conformations from insoluble FN fibers. Using a well-established in vitro FN fiber stretch assay, we discovered that the binding of a crosslinking enzyme to ECM fibers is mechano-regulated. TG2 binding to FN is tuned by the mechanical tension of FN fibers, whereby TG2 predominantly co-localizes to low-tension FN fibers, while fiber stretching reduces their affinity for TG2. This mechano-regulated binding relies on the proximity between the N-terminal ß-sandwich and C-terminal ß-barrels of TG2. Crosslinking mass spectrometry (XL-MS) revealed a novel TG2-FN synergy site within TG2's C-terminal ß-barrels that interacts with FN regions located outside of the canonical gelatin binding domain, specifically FNI2 and FNIII14-15. Combining XL-MS distance restraints with molecular docking revealed the mechano-regulated binding mechanism between TG2 and modules FNI7-9 by which mechanical forces regulate TG2-FN interactions. This highlights a previously unrecognized role of TG2 as a tension sensor for FN fibers. This novel interaction mechanism has significant implications in physiology and mechanobiology, including how forces regulate cell adhesion, spreading, migration, phenotype modulation, depending on the tensional state of ECM fibers. Data are available via ProteomeXchange with identifier PXD043976.


Assuntos
Fibronectinas , Proteína 2 Glutamina gama-Glutamiltransferase , Fibronectinas/metabolismo , Transglutaminases/genética , Transglutaminases/química , Transglutaminases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas da Matriz Extracelular/metabolismo
4.
J Sci Food Agric ; 104(6): 3468-3476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133640

RESUMO

BACKGROUND: The use of emulsion gels to protect and deliver probiotics has become an important topic in the food industry. This study used transglutaminase (TGase) to regulate ovalbumin (OVA) to prepare a novel emulsion gel. The effects of OVA concentration and the addition of TGase on the microstructure, rheological properties, water-holding capacity, and stability of the emulsion gels were investigated. RESULTS: With the addition of TGase and the increasing OVA, the particle size of the emulsion gels decreased significantly (P < 0.05). The gels with TGase exhibited greater water holding, hardness, and chewiness to some extent by forming a more uniform and stable system. After simulated digestion, the survival rate of Bifidobacterium lactis embedded in OVA emulsion gels improved significantly in comparison with the oil-water mixture as a result of the protective effect of the emulsion gel encapsulation. CONCLUSION: By increasing the OVA content and adding TGase, the rheological characteristics, stability, and encapsulation capability of the OVA emulsion gel could be enhanced, providing a theoretical basis for the use of emulsion gels to construct probiotic delivery systems. © 2023 Society of Chemical Industry.


Assuntos
Transglutaminases , Água , Ovalbumina , Emulsões/química , Transglutaminases/química , Géis/química , Reologia , Água/química , Bactérias
5.
Int J Biol Macromol ; 253(Pt 8): 127525, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37863133

RESUMO

Soybean protein isolate (SPI) was treated by the combined exposure to ultrasound and high pressure and then subjected to transglutaminase (TGase)-catalyzed cross-linking to prepare SPI cold-set gels. The effects of combined treatments on physicochemical and structural properties of TGase-induced SPI cold-set gels were investigated. The combination of ultrasound and high pressure promoted the covalent disulfide bonds and ε-(γ-glutaminyl) lysine isopeptide bonds as well as non-covalent hydrophobic interactions, which further improved the gelation properties of SPI compared to ultrasound or high pressure alone. In particular, the 480 W ultrasound followed by high pressure treatment of gels led to higher strength (120.53 g), water holding capacity (95.39 %), immobilized water (93.92 %), lightness (42.18), whiteness (51.03), and elasticity (G' = 407 Pa), as well as more uniform and compact microstructure, thus resulting in the improved gel network structure. The combination of two treatments produced more flexible secondary structure, tighter tertiary conformation and higher denaturation degree of protein in the gels, leading to more stable gel structure. The structural modifications of SPI contributed to the improvement of its gelation properties. Therefore, the combined application of ultrasound and high pressure can be an effective method for improving the structure and properties of TGase-induced SPI cold-set gels.


Assuntos
Proteínas de Soja , Transglutaminases , Proteínas de Soja/química , Transglutaminases/química , Interações Hidrofóbicas e Hidrofílicas , Géis/química , Água/química
6.
Int J Biol Macromol ; 253(Pt 6): 127399, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37827415

RESUMO

Pushed by the environmental pollution and health hazards of plastic packaging, the development of biodegradable food packaging films (FPFs) is a necessary and sustainable trend for social development. Most protein molecules have excellent film-forming properties as natural polymer matrices, and the assembled films have excellent barrier properties, but show defects such as low water resistance and poor mechanical properties. In order to improve the performance of protein-based films, transglutaminase (TG) is used as a safe and green cross-linking (CL) agent. This work covers recent developments on TG cross-linked protein-based FPFs, mainly comprising proteins of animal and plant origin, including gelatin, whey protein, zein, soy proteins, bitter vetch protein, etc. The chemical properties and reaction mechanism of TG are briefly introduced, focusing on the effects of TG CL on the physicochemical properties of different protein-based FPFs, including barrier properties, water resistance, mechanical properties and thermal stability. It is concluded that the addition of TG can significantly improve the physical and mechanical properties of protein-based films, mainly improving their water resistance, barrier, mechanical and thermal properties. It is worth noting that the effect of TG on the properties of protein-based films is not only related to the concentration of TG added, but also related to CL temperature and other factors. Moreover, TG can also be used in combination with other strategies to improve the properties of protein-based films.


Assuntos
Embalagem de Alimentos , Transglutaminases , Animais , Transglutaminases/química , Resistência à Tração , Água , Gelatina/química
7.
Int J Biol Macromol ; 253(Pt 7): 127355, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838118

RESUMO

Microbial transglutaminase (MTG) is a usable enzyme for biomacromolecule modification. In the present study, a "molecular chaperonin" strategy was developed to produce MTG in E. coli cytoplasm with high expression level and a "small molecule-mediated chemical modification" strategy was adopted to strip propeptide chaperonin efficiently during purification. Propeptide (Pro) was expressed separately as a chaperonin to facilitate MTG expression in E. coli cytoplasm with a yield up to 300 mg or about 9 kU from 1 L fed-batch culture. Furthermore, small molecular chemicals were applied to interfere the interaction between MTG and Pro. Chemical acetylation was identified as a suitable method to strip Pro resulting in pure MTG with high specific activity up to 49.6 U/mg. The purified acetylated MTG was characterized by MS analysis. The deconvoluted mass and Peptide Sequence Tags analysis confirmed acetylation on amino groups of MTG protein. Finally, the applications of obtained MTG were demonstrated via protein polymerization of bovine serum albumin and PEGylation of human interferon-α2b. Our method provides MTG with high purity and specific activity as well as unique merit with masked amino groups thus avoiding self-polymerization and cross-linking between MTG and substrates.


Assuntos
Escherichia coli , Transglutaminases , Humanos , Transglutaminases/genética , Transglutaminases/química , Escherichia coli/metabolismo
8.
J Pharm Sci ; 112(10): 2629-2636, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586591

RESUMO

Microbial transglutaminase (mTG) has become a powerful tool for manufacturing antibody-drug conjugates (ADCs). It enables site-specific conjugation by catalyzing formation of stable isopeptide bond between glutamine (Q) side chain and primary amine. However, the downstream impact of mTG-mediated conjugation on ADC product quality, especially on high molecular weight (HMW) size variant formation has not been studied in a systematic manner. This study investigates the mechanisms underlying the formation of HMW size variants in mTG-mediated ADCs using size exclusion chromatography (SEC) and liquid chromatography-mass spectrometry (LC-MS). Our findings revealed that the mTG-mediated glutamine and lysine (K) crosslinking is the primary source of the increased level of HMW size variants in the ADCs. In the study, two monoclonal antibodies (mAbs) with glutamine engineered for site-specific conjugation were used as model systems. Based on the LC-MS analysis, a single lysine (K56) in the heavy chain (HC) was identified as the major Q-K crosslinking site in one of the two mAbs. The HC C-terminal K was observed to crosslink to the target Q in both mAbs. Quantitative correlation was established between the percentage of HMW size variants determined by SEC and the percentage of crosslinked peptides quantified by MS peptide mapping. Importantly, it was demonstrated that the level of HMW size variants in the second ADC was substantially reduced by the complete removal of HC C-terminal K before conjugation. The current work demonstrates that crosslinking and other side reactions during mTG-mediated conjugation needs to be carefully monitored and controlled to ensure process consistency and high product quality of the final ADC drug product.


Assuntos
Imunoconjugados , Imunoconjugados/química , Transglutaminases/química , Peso Molecular , Lisina/química , Glutamina , Anticorpos Monoclonais/química
9.
J Sci Food Agric ; 103(14): 7021-7029, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37402232

RESUMO

BACKGROUND: Quinoa protein is enriched with a wide range of amino acids, including all nine essential amino acids necessary for the human body, and in appropriate proportions. However, as the main ingredient of gluten-free food, it is difficult for quinoa to form a certain network structure for lack of gluten protein. The aim of this work was to enhance the gel properties of quinoa protein. Therefore, the texture characteristics of quinoa protein treated with different ultrasound intensities coupled with transglutaminase (TGase) were investigated. RESULTS: The gel strength of quinoa protein gel increased markedly by 94.12% with 600 W ultrasonic treatment, and the water holding capacity increased from 56.6% to 68.33%. The gel solubility was reduced and free amino content increased the apparent viscosity and the consistency index. Changes in the free sulfhydryl group and hydrophobicity indicated that ultrasound stretched protein molecules and exposed active sites. The enhanced intrinsic fluorescence intensity at 600 W demonstrated that ultrasonic treatment affected the conformation of quinoa protein. New bands emerged in sodium dodecylsulfate-polyacrylamide gel electrophoresis indicating that high-molecular-weight polymers were generated through TGase-mediated isopeptide bonds. Furthermore, scanning electron microscopy showed that the gel network structure of TGase-catalyzed quinoa protein was more uniform and denser, thereby improving the gel quality of quinoa protein. CONCLUSION: The results suggested that high-intensity ultrasound combined with TGase would be an effective way to develop higher-quality quinoa protein gel. © 2023 Society of Chemical Industry.


Assuntos
Chenopodium quinoa , Humanos , Chenopodium quinoa/química , Temperatura Alta , Transglutaminases/química , Glutens/química , Solubilidade
10.
Ultrason Sonochem ; 98: 106478, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354763

RESUMO

The ß-conglycinin (7S) was pre-treated with high-intensity ultrasonic (HIU) and subsequently formed into composite edible films with the transglutaminase (TGase) method. Effects of HIU pretreatment time (0, 5, 10, 15, and 20 min) on the conformation of 7S and structural and application properties of 7S-TGase films were evaluated. The analysis of 7S conformation results revealed that HIU pretreatment for 0-10 min significantly dissociated the 7S, exposed internal hydrophobic groups of protein, increased its intermolecular hydrogen bonds, and altered the protein secondary and tertiary structure. The structural properties of films were evaluated by SEM, XRD, and ATR-FTIR. SEM showed that HIU reduced film wrinkles and cracks and improved unevenness. XRD and ATR-FTIR indicated that the film obtained an enlarged crystallinity, and the amide I and amide II regions of films were peak-shifted which is usually associated with the formation of covalent bonds. Notably, analysis of intermolecular force showed that HIU facilitated the formation of hydrogen bonds, hydrophobic interactions, and ε-(γ-glutamyl) lysine bonds in 7S-TGase films. The above structural changes in 7S and films were beneficial for the application properties of films. Results indicated that 10 min HIU pretreatment effectively improved the mechanical properties and water resistance, reduced water vapor permeability and oxygen permeability, and decreased the opacity of 7S-TGase films. However, the color of the film was not affected by the HIU, with an overall bright and yellowish color.


Assuntos
Filmes Comestíveis , Globulinas , Ultrassom , Transglutaminases/química , Permeabilidade
11.
J Agric Food Chem ; 71(16): 6366-6375, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039372

RESUMO

Streptomyces mobaraenesis transglutaminase can catalyze the cross-linking of proteins, which has been widely used in food processing. In this study, we rationally modified flexible regions to further improve the thermostability of FRAPD-TGm2 (S2P-S23V-Y24N-E28T-S199A-A265P-A287P-K294L), a stable mutant of the transglutaminase constructed in our previous study. First, five flexible regions of FRAPD-TGm2 were identified by molecular dynamics simulations at 330 and 360 K. Second, a script based on Rosetta Cartesian_ddg was developed for virtual saturation mutagenesis within the flexible regions far from the substrate binding pocket, generating the top 18 mutants with remarkable decreases in folding free energy. Third, from the top 18 mutants, we identified two mutants (S116A and S179L) with increased thermostability and activity. Finally, the above favorable mutations were combined to obtain FRAPD-TGm2-S116A-S179L (FRAPD-TGm2A), exhibiting a half-life of 132.38 min at 60 °C (t1/2(60 °C)) and a specific activity of 79.15 U/mg, 84 and 21% higher than those of FRAPD-TGm2, respectively. Therefore, the current result may benefit the application of S. mobaraenesis transglutaminase at high temperatures.


Assuntos
Streptomyces , Estabilidade Enzimática , Streptomyces/genética , Streptomyces/metabolismo , Transglutaminases/química , Proteínas , Simulação de Dinâmica Molecular , Temperatura
12.
Food Chem ; 419: 136070, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030209

RESUMO

A higher specific activity of microbial transglutaminase (mTGase) is desirable for a broad range of applications ranging from food industry to biotechnology. Three-dimensional docking simulation of mTGase revealed that residues V65, W69, and Y75 were critical for substrate recognition. A semi-rational mutagenesis approach was applied to each residue to generate three separate mini mutant libraries. A high-throughput screening process identified five mutants that demonstrated improved specific activities than the wild type (WT) mTGase were isolated from the Y75 mini mutant library. Mutant Y75L showed approximately 60% increment in specific activity and improved substrate specificity. Conjugation of two heterologous single-chain fragment variable clones to generate a diabody with mutant Y75L was successfully performed and validated. This work demonstrates the successful application of semi-rational mutagenesis coupled with a high-throughput screening approach to identify mTGase mutants with improved specific activities and specificities which are beneficial for protein-protein conjugation.


Assuntos
Transglutaminases , Transglutaminases/genética , Transglutaminases/química , Mutagênese
13.
J Biosci Bioeng ; 135(6): 440-446, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37088672

RESUMO

Recently, functional nanowire production using amyloids as a scaffold for protein immobilization has attracted attention. However, protein immobilization on amyloid fibrils often caused protein inactivation. In this study, we investigated protein immobilization using enzymatic peptide ligation to suppress protein inactivation during immobilization. We attempted to immobilize functional molecules such as green fluorescent protein (GFP) and Nanoluc to a transthyretin (TTR) amyloid using microbial transglutaminase (MTG), which links the glutamine side chain to the primary amine. Linkage between amyloid fibrils and functional molecules was achieved through the MTG substrate sequence, and the functional molecules-loaded nanowires were successfully fabricated. We also found that the synthetic process from amyloidization to functional molecules immobilization could be achieved in a single-step procedure.All rights reserved.


Assuntos
Nanoestruturas , Transglutaminases , Transglutaminases/química , Transglutaminases/metabolismo , Amiloide/química , Amiloide/metabolismo , Peptídeos , Proteínas de Fluorescência Verde/metabolismo
14.
J Texture Stud ; 54(4): 541-549, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36918727

RESUMO

The objective of this study was to investigate effects of anthocyanins (AC) and microbial transglutaminase (MTGase) on the physicochemical properties of surimi gels from silver carp. The addition of AC and MTGase significantly increased gel strength and water holding capacity (WHC) of surimi gels, but the effect of MTGase was much stronger (p < .05). There were the highest gel strength, storage modulus (G') and WHC with 0.1 g/100 g AC and 0.4 g/100 g MTGase, while they were higher than that with AC or MTGase alone. AC promoted the cross-linking mainly by covalent and non-covalent bonds in surimi gels, while MTGase did mainly through covalent bonds. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the results of gel strength, WHC, chemical interactions and G' of surimi gel or paste with AC and MTGase. In general, AC and MTGase could synergistically improve the physicochemical properties of surimi gels and potentially enhance the quality of surimi-based product from silver carp.


Assuntos
Antocianinas , Carpas , Animais , Transglutaminases/química , Géis/química , Água
15.
Food Res Int ; 166: 112623, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914358

RESUMO

Plant proteins can be extruded under high moisture content (above 40 %) to form meat-like fibrous structures, which is the basis for meat-like substitute products. However, the proteins' extrudability from various sources remain challenging in terms of generating fibrous structures under combinations of high-moisture extrusion with transglutaminase (TGase) modifications. In this study, proteins from soy (soy protein isolate, SPI, and soy protein concentrate, SPC), pea (pea protein isolate, PPI), peanut (peanut protein powder, PPP), wheat (wheat gluten, WG), and rice (rice protein isolate, RPI) were texturized using high-moisture extrusion combined with transglutaminase (TGase) modifications to enact changes in protein structure and extrusion capabilities. The results showed that soy proteins (SPI or SPC) responsed to torque, die pressure and temperature during extrusion, and this phenomenon was more pronounced at a higher protein content (SPI). In contrast, rice protein exhibited poor extrudability, leading to large losses of thermomechanical energy. TGase significantly affects the orientation of protein fibrous structures along the extrusion direction by impacting the rate of protein gelation during the high-moisture extrusion process, with the impact mainly occurring in the cooling die. Globulins (mainly 11S) played a major role in forming fibrous structures and the aggregation of globulins or reduction of gliadins under TGase modification impacted the orientation of the fibrous structure along the extrusion direction. Some thermomechanical treatment during high-moisture extrusion results in protein conversion from compact structure into more extended or stretched state, and the increase of random coil structures for proteins derived from wheat and rice would lead to these looser structures in the extrudates. Thus, TGase can be combined with high-moisture extrusion to regulate the formation of plant protein fibrous structures, dependent on the specific protein source and content.


Assuntos
Manipulação de Alimentos , Proteínas de Soja , Proteínas de Soja/química , Manipulação de Alimentos/métodos , Solubilidade , Transglutaminases/química , Glutens/química , Proteínas de Plantas/química
16.
Ultrason Sonochem ; 94: 106317, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738695

RESUMO

Qingke protein rich in restricted amino acids such as lysine, while the uncoordination of ratio of glutenin and gliadin in Qingke protein has a negative impact on its processing properties. In this study, the effect of multiple-frequency ultrasound combined with transglutaminase treatment on the functional and structural properties of Qingke protein and its application in noodle manufacture were investigated. The results showed that compared with the control, ultrasound-assisted transglutaminase dual modification significantly increased the water and oil holding capacity, apparent viscosity, foaming ability, and emulsifying activity index of Qingke protein, which exhibited a higher storage modulus G' (P < 0.05). Meanwhile, ultrasound combined with transglutaminase treatment enhanced the cross-linking degree of Qingke protein (P < 0.05), as shown by decreased free amino group and free sulfhydryl group contents, and increased disulfide bond content. Moreover, after the ultrasound-assisted transglutaminase dual modification treatment, the fluorescence intensity, the contents of α-helix and random coil in the secondary structure of Qingke protein significantly decreased, while the ß-sheet content increased (P < 0.05) compared with control. SDS-PAGE results showed that the bands of Qingke protein treated by ultrasound combined with transglutaminase became unclear. Furthermore, the quality of Qingke noodles made with Qingke powder (140 g/kg dual modified Qingke protein mixed with 860 g/kg extracted Qingke starch) and wheat gluten 60-70 g/kg was similar to that of wheat noodles. In summary, multiple-frequency ultrasound combined with transglutaminase dual modification can significantly improve the physicochemical properties of Qingke protein and the modified Qingke proteins can be used as novel ingredients for Qingke noodles.


Assuntos
Amido , Transglutaminases , Transglutaminases/química , Estrutura Secundária de Proteína , Viscosidade
17.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838622

RESUMO

Factor XIIIa (FXIIIa) is a transglutaminase of major therapeutic interest for the development of anticoagulants due to its essential role in the blood coagulation cascade. While numerous FXIIIa inhibitors have been reported, they failed to reach clinical evaluation due to their lack of metabolic stability and low selectivity over transglutaminase 2 (TG2). Furthermore, the chemical tools available for the study of FXIIIa activity and localization are extremely limited. To combat these shortcomings, we designed, synthesised, and evaluated a library of 21 novel FXIIIa inhibitors. Electrophilic warheads, linker lengths, and hydrophobic units were varied on small molecule and peptidic scaffolds to optimize isozyme selectivity and potency. A previously reported FXIIIa inhibitor was then adapted for the design of a probe bearing a rhodamine B moiety, producing the innovative KM93 as the first known fluorescent probe designed to selectively label active FXIIIa with high efficiency (kinact/KI = 127,300 M-1 min-1) and 6.5-fold selectivity over TG2. The probe KM93 facilitated fluorescent microscopy studies within bone marrow macrophages, labelling FXIIIa with high efficiency and selectivity in cell culture. The structure-activity trends with these novel inhibitors and probes will help in the future study of the activity, inhibition, and localization of FXIIIa.


Assuntos
Fator XIIIa , Transglutaminases , Transglutaminases/química , Fator XIIIa/química , Fator XIIIa/metabolismo , Corantes Fluorescentes , Técnicas de Cultura de Células , Macrófagos/metabolismo
18.
Food Sci Technol Int ; 29(8): 799-808, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36000280

RESUMO

In a bid to produce rice flour noodles with improved texture and reduced cooking time, rice flour-soy protein isolate noodles (RNS) were structurally enhanced by a combined treatment (COM) of microbial transglutaminase (MTG) with glucono-δ-lactone (GDL). The RNS-COM was either dried using superheated steam (SHS) to yield RNS-COM-SHS or steamed for 10 min (S10) before air drying to produce RNS-COM-S10 noodles. Control samples were SHS-dried rice flour (RN-SHS) and air-dried RN-S10 noodles. In general, textural and microstructural properties indicated higher textural properties and a more robust network in RNS-COM-SHS and RNS-COM-S10 than in other noodles. However, optimum cooking time (P < 0.5) was in the order; RN-SHS, RNS-COM-SHS < RN-S10 < RNS-COM-S10. As a result of the COM treatment, structurally enhanced noodles were more resistant to cooking. As applied in RNS-COM-SHS noodles, SHS was able to improve cooking quality, probably through the formation of bigger and evenly spread pores that had promoted faster gelatinisation of starch, with a high order of relative starch crystallinity.


Assuntos
Proteínas de Soja , Vapor , Farinha/análise , Transglutaminases/química , Culinária , Amido/química
19.
ACS Chem Biol ; 18(1): 166-175, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36490372

RESUMO

mRNA display is a powerful, high-throughput technology for discovering novel, peptide ligands for protein targets. A number of methods have been used to expand the chemical diversity of mRNA display libraries beyond the 20 canonical amino acids, including genetic code reprogramming and biorthogonal chemistries. To date, however, there have been few reports using enzymes as biocompatible reagents for diversifying mRNA display libraries. Here, we report the evaluation and implementation of the common industrial enzyme, microbial transglutaminase (mTG), as a versatile biocatalyst for cyclization of mRNA display peptide libraries via lysine-to-glutamine isopeptide bonds. We establish two separate display-based assays to validate the compatibility of mTG with mRNA-linked peptide substrates. These assays indicate that mTG has a high degree of substrate tolerance and low single round bias. To demonstrate the potential benefits of mTG-mediated cyclization in ligand discovery, high diversity mTG-modified libraries were employed in two separate affinity selections: (1) one against the calcium and integrin binding protein, CIB1, and (2) the second against the immune checkpoint protein and emerging therapeutic target, B7-H3. Both selections resulted in the identification of potent, cyclic, low nanomolar binders, and subsequent structure-activity studies demonstrate the importance of the cyclization to the observed activity. Notably, cyclization in the CIB1 binder stabilizes an α-helical conformation, while the B7-H3 inhibitor employs two bridges, one mTG-derived lactam and a second disulfide to achieve its potency. Together, these results demonstrate potential benefits of enzyme-based biocatalysts in mRNA display ligand selections and establish a framework for employing mTG in mRNA display.


Assuntos
Biblioteca de Peptídeos , Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ligantes , Proteínas/metabolismo , Ligação Proteica , Transglutaminases/genética , Transglutaminases/química , Transglutaminases/metabolismo
20.
J Sci Food Agric ; 103(4): 1874-1884, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36468888

RESUMO

BACKGROUND: The poor gelling and emulsification properties of pea protein (PeaP) limit its application in gel-based products. In this study, a strong hydrogel and a high internal phase emulsion (HPLE) gel of PeaP were constructed by covalent cross-linking of transglutaminase (TGase) assisted by high-intensity ultrasound. RESULTS: Ultrasound promoted the catalytic efficiency of TGase, with the gel-point temperature dropping from 44 °C to 28 °C after 10 min of ultrasound. As the ultrasound time increased from 1 min to 10 min, the microstructure of the hydrogel also changed from an irregular macropore structure to a relatively homogeneous honeycomb structure. This was accompanied by an improvement in gel strength, water holding capacity, and ultimate stress. Ultrasound enhanced the binding of water to PeaP, but had little effect on the water-locking ability of the network structure. Ultrasonication improved the self-supporting ability of the HPIE gels. The oil droplets within the HPIE gels were closely aligned to form a hexagonal structure. The PeaP layer was further cross-linked by TGase, strengthening the network structure. High internal phase emulsion gel displayed a higher gel strength, viscosity, and good self-healing ability under 1 min ultrasound. Meanwhile, HPIE gel at 1 min of ultrasound could be printed with the highest clarity. CONCLUSION: This work provided some insights into improving the functional properties of PeaP, which is helpful for the design and development of PeaP-based gel products. © 2022 Society of Chemical Industry.


Assuntos
Hidrogéis , Proteínas de Ervilha , Emulsões/química , Transglutaminases/química , Géis/química , Água/química , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...